Engineered small extracellular vesicles for the neutralization of SARS-CoV-2

Small extracellular vesicles (sEVs) are excellent nanoscale protein carriers. For example, in a recent study, researchers used sEVs as a decoy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by displaying the virus’s host receptor on the surface of the sEV.

Characterizing these engineered sEVs, the researchers demonstrated that the soluble angiotensin-converting enzyme 2 (sACE-2) loaded sEV successfully binds and thus inhibits the entry of wild-type SARS-CoV-2 as well as its variants, protecting against SARS-CoV-2 infection. They also demonstrated the therapeutic efficacy of these engineered sEVs in vivo.

This study is a recent short communication in the Journal of Extracellular Vesicles.

With the emerging of new variants and increasing cases of infections and hospitalizations, finding an effective therapeutic solution is necessary to control the ongoing COVID-19 pandemic caused by the SARS-CoV-2.

To this end, scientists are exploring the possibility of neutralizing the virus by utilizing its binding affinity. The viral spike (S) protein binds to the host ACE-2 receptor to gain entry into the human host cells. ACE2 is present on cells’ surface in the lungs, intestine, kidneys.